Unimodular eigenvalues and weak mixing

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak mixing and eigenvalues for Arnoux-Rauzy sequences

— We define by simple conditions two wide subclasses of the socalled Arnoux-Rauzy systems; the elements of the first one share the property of (measure-theoretic) weak mixing, thus we generalize and improve a counterexample to the conjecture that these systems are codings of rotations; those of the second one have eigenvalues, which was known hitherto only for a very small set of examples. Résu...

متن کامل

Eigenvalues and Mixing Time

Mixing time of a Markov chain depends on the eigenvalues of its transition matrix. We give some examples and bounds on the mixing time in terms of the eigenvalue having second largest absolute value. This paper is based on Chapters 1, 4, and 12 of [1].

متن کامل

First-order optical systems with unimodular eigenvalues.

It is shown that a lossless first-order optical system whose real symplectic ray transformation matrix can be diagonalized and has only unimodular eigenvalues is similar to a separable fractional Fourier transformer in the sense that the ray transformation matrices of the unimodular system and the separable fractional Fourier transformer are related by means of a similarity transformation. More...

متن کامل

A note on unimodular eigenvalues for palindromic eigenvalue problems

We consider the occurrence of unimodular eigenvalues for palindromic eigenvalue problems associated with the matrix polynomial Pn(λ) ≡ ∑n i=0Aiλ i where Ai = An−i with M∗ ≡ M , M or PMP (P 2 = I). From the properties of palindromic eigenvalues and their characteristic polynomials, we show that eigenvalues are not generically excluded from the unit circle, thus occurring quite often, except for ...

متن کامل

Topological Weak Mixing and Quasi-bohr Systems

A minimal dynamical system (X,T ) is called quasi-Bohr if it is a nontrivial equicontinuous extension of a proximal system. We show that if (X,T ) is a minimal dynamical system which is not weakly mixing then some minimal proximal extension of (X, T ) admits a nontrivial quasi-Bohr factor. (In terms of Ellis groups the corresponding statement is: AG′ = G implies weak mixing.) The converse does ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1980

ISSN: 0022-1236

DOI: 10.1016/0022-1236(80)90079-8